首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5291篇
  免费   1174篇
  国内免费   483篇
化学   3089篇
晶体学   89篇
力学   150篇
综合类   24篇
数学   140篇
物理学   3456篇
  2024年   10篇
  2023年   70篇
  2022年   140篇
  2021年   228篇
  2020年   329篇
  2019年   225篇
  2018年   170篇
  2017年   232篇
  2016年   248篇
  2015年   212篇
  2014年   278篇
  2013年   479篇
  2012年   335篇
  2011年   395篇
  2010年   282篇
  2009年   327篇
  2008年   292篇
  2007年   330篇
  2006年   335篇
  2005年   261篇
  2004年   242篇
  2003年   207篇
  2002年   175篇
  2001年   148篇
  2000年   157篇
  1999年   83篇
  1998年   106篇
  1997年   106篇
  1996年   86篇
  1995年   72篇
  1994年   56篇
  1993年   61篇
  1992年   59篇
  1991年   38篇
  1990年   35篇
  1989年   34篇
  1988年   25篇
  1987年   12篇
  1986年   11篇
  1985年   11篇
  1984年   6篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   4篇
  1974年   2篇
  1973年   2篇
排序方式: 共有6948条查询结果,搜索用时 46 毫秒
1.
Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high Tgof 110℃ and Td of 385℃ and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.  相似文献   
2.
Computational modeling of the optical characteristics of organic molecules with potential for thermally activated delayed fluorescence (TADF) may assist markedly the development of more efficient emitting materials for organic light-emitting diodes. Recent theoretical studies in this area employ mostly methods from density functional theory (DFT). In order to obtain accurate predictions within this approach, the choice of a proper functional is crucial. In the current study, we focus on testing the performance of a set of DFT functionals for estimation of the excitation and emission energy and the excited singlet-triplet energy gap of three newly synthesized compounds with capacity for TADF. The emitters are designed specifically to enable charge transfer by π-electron conjugation, at the same time possessing high-energy excited triplet states. The functionals chosen for testing are from various groups ranging from gradient-corrected through global hybrids to range-separated ones. The results show that the monitored optical properties are especially sensitive to how the long-range part of the exchange energy is treated within the functional. The accurate functional should also be able to provide well balanced distribution of the π-electrons among the molecular fragments. Global hybrids with moderate (less than 0.4) share of exact exchange (B3LYP, PBE0) and the meta-GGA HSE06 are outlined as the best performing methods for the systems under study. They can predict all important optical parameters correctly, both qualitatively and quantitatively.  相似文献   
3.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
4.
In the last decade, the field of stimuli-responsive luminescent materials have been intensely emerged because of the high potential application to functional sensors or photoelectronic devices. In particular, luminescent molecular crystals constructed from Au(I) complexes have produced a wide range of examples of luminescent alterations when some external stimulations, such as heat, mechanical stress, vapor (or solvents), were applied to the solid samples. In this review, we describe the recent progress through a summary of the reported Au(I) complexes based on their utilized stimuli-responsive mechanisms, which are categorized in crystal phase transitions (“crystal-to-amorphous”, “crystal-to-crystal” and “single-crystal-to-single-crystal” transitions) and molecular rotation in crystalline media, respectively.  相似文献   
5.
Guang-Tai Xue 《中国物理 B》2021,30(11):110313-110313
We study the effect of waveguide thickness variations on the frequency spectrum of spontaneous parametric down-conversion in the periodically-poled lithium niobate on insulator (LNOI) waveguide. We analyze several variation models and our simulation results show that thickness variations in several nanometers can induce distinct effects on the central peak of the spectrum, such as narrowing, broadening, and splitting. We also prove that the effects of positive and negative variations can be canceled and thus lead to a variation-robust feature and an ultra-broad bandwidth. Our study may promote the development of on-chip photon sources in the LNOI platform, as well as opens up a way to engineer photon frequency state.  相似文献   
6.
A fluorescent monolayered two-dimensional polymer (2DP) containing both tetraphenylethylene (TPE) and imine linkages is synthesized at air-water interface using the Langmuir-Blodgett method. We designed TPE-based monomers with long distances between the TPE and the imine linkages to avoid the charge transfer and therefore keep the fluorescence. A monolayered 2DP provided with more than 104 μm2 in domain size and around 0.8 nm thickness was obtained through a successive Schiff base reaction at air-water interface. The nanostructures and fluorescent property of 2DP films were characterized by optical microscopy, SEM, TEM, AFM and fluorescence spectrum. Most importantly, the tip-enhanced Raman spectroscopy (TERS) was utilized here to confirm the success of the polycondensation of monolayered 2DP.  相似文献   
7.
制备了3种不同质量浓度的充填体试件,进行了单轴压缩声发射试验,分析了不同浓度的充填体力学特性,重点研究了试件破坏过程中的声发射振铃计数、声发射累计撞击数与声发射累计能量的比值(r值)、主频及其相对高频信号激增响应系数特征。研究表明:随着浓度的增加,充填体的峰值强度与弹性模量呈增大趋势,充填体中出现的声发射累计振铃计数越多;r值先升高再持续减小到一个较低值,随着外载荷的增加,进入缓慢升高阶段,峰值前均保持在该阶段。充填体破裂前兆信息在声发射信号主频分布中呈现主频段增多现象,表现为由加载初期的1~2个主频段,在临界主破裂时增多到3~5个主频段;且随着浓度的增加,声发射信号主频频段分布越宽,声发射相对高频信号(160~180 kHz)的激增响应系数呈递减趋势。以上特征可为不同浓度的尾砂胶结充填体稳定性监测、预测提供依据。  相似文献   
8.
Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core–shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core–shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core–shell counterpart. Such a core–shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.  相似文献   
9.
Boron-dipyrromethene dyes (BODIPY) are of great interest nowadays mostly due to their valuable optical properties. Nevertheless, no systematic research of the optical property dependence on the structure of dyes has been performed yet. In this work, analysis of the available quantum-chemical methods for BODIPY optical property calculations has been carried out. The accuracy of eight DFT functionals has been studied. The solvation effects upon excitation have been considered within two schemes. The methods that predict the absorption and emission spectra of BODIPY derivatives with high accuracy have been proposed. Using the suggested methods, the influence of nature of substituents and their position in the BODIPY core on the optical spectra of the dyes has been studied. A complex pattern of red- and blue-shifts in optical spectra in dependence of nature and position of substituents has been revealed. The results of this work provide the way for efficient design of BODIPY derivatives with desired optical properties.  相似文献   
10.
ABSTRACT

Multicolour emissive carbon dots (CDs) are widely investigated by virtue of their merits on fluorescent properties. Method on heteroatom doping assisted with various solvents has been proved efficient in achieving multiple-colour-emissive CDs, especially long-wavelength emission. Herein, a synthesis of multicolour-emissive CDs by controlled surface function is reported. By tuning the thermal-pyrolysis temperature and molar ratio of reactants, optimal emission of the resulted CDs gradually shifts from blue to yellow light with the assistance of different solvents. According to the emissive relationship dependent on excitation, fluorescence lifetimes, and FT-IR of these CDs, the different surface states participated with S and N elements on the surface of carbogenic core govern fluorescent colours of the CDs. In terms of the applications, blue CDs (B-CDs) exhibits high sensitivity for ion detections of Ag+ and Fe3+, which is further illustrated to have different quenching mechanisms each other because that these ions have the affinity interaction with different surface groups of the CDs. Moreover, blue and yellow CDs solutions are mixed with PVP water solution to fabricate white-light CDs/PVP film, which exhibits stable fluorescence with a CIE coordinate of (0.32, 0.33) and endows these CDs as potentially fluorescent nanomaterial in the solid state lighting field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号